FVQA: Fact-Based Visual Question Answering
نویسندگان
چکیده
منابع مشابه
FVQA: Fact-based Visual Question Answering
Visual Question Answering (VQA) has attracted much attention in both computer vision and natural language processing communities, not least because it offers insight into the relationships between two important sources of information. Current datasets, and the models built upon them, have focused on questions which are answerable by direct analysis of the question and image alone. The set of su...
متن کاملSpeech-Based Visual Question Answering
This paper introduces the task of speech-based visual question answering (VQA), that is, to generate an answer given an image and an associated spoken question. Our work is the first study of speechbased VQA with the intention of providing insights for applications such as speech-based virtual assistants. Two methods are studied: an end to end, deep neural network that directly uses audio wavef...
متن کاملTask-driven Visual Saliency and Attention-based Visual Question Answering
Visual question answering (VQA) has witnessed great progress since May, 2015 as a classic problem unifying visual and textual data into a system. Many enlightening VQA works explore deep into the image and question encodings and fusing methods, of which attention is the most effective and infusive mechanism. Current attention based methods focus on adequate fusion of visual and textual features...
متن کاملInvestigating Embedded Question Reuse in Question Answering
The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...
متن کاملRevisiting Visual Question Answering Baselines
Visual question answering (VQA) is an interesting learning setting for evaluating the abilities and shortcomings of current systems for image understanding. Many of the recently proposed VQA systems include attention or memory mechanisms designed to support “reasoning”. For multiple-choice VQA, nearly all of these systems train a multi-class classifier on image and question features to predict ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2018
ISSN: 0162-8828,2160-9292,1939-3539
DOI: 10.1109/tpami.2017.2754246